The generator matrix 1 0 0 0 1 1 1 1 X^2 1 X^2+X X 1 X^2 1 1 1 X 1 1 1 X^2 0 X X 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 X^2 X^2 X^2+X 1 1 0 1 0 0 0 X^2 1 X^2+1 1 X^2+X+1 X^2 1 0 1 X^2+1 X^2 1 1 X^2+1 X^2+1 X^2+X X^2+X 1 1 X X 0 X^2+X+1 X^2+X+1 1 1 X^2+X 0 X^2 X^2 X 1 0 X^2+1 X X+1 X 0 X^2 X+1 X^2+X 0 0 1 0 0 X^2+1 1 X^2+X X+1 X^2+1 1 X^2 X^2+X+1 X^2+1 X X X^2+X+1 X^2+X+1 0 X^2+X+1 X+1 1 X^2+1 X 1 1 1 X^2+1 X^2+X X^2+X X^2+1 X^2+X 1 X^2+X X^2 X^2 1 X^2+X X^2 X+1 X^2 1 X^2+X 1 X^2+X 1 0 0 0 1 1 1 X^2 X+1 X+1 X^2+1 X^2+1 X^2+1 X X 0 X^2+1 X+1 X+1 X^2+X X^2 0 X^2+1 0 X+1 X 1 X+1 X X^2+X+1 X^2 X+1 X^2+1 X+1 X X^2+X+1 X^2+1 X^2 X^2+X X^2+1 X X+1 0 1 X^2 X^2+X 0 0 0 0 0 X 0 0 0 0 X X X X^2+X X X X^2+X X X^2 X^2+X X^2 X^2+X X X^2+X X^2+X X^2+X X^2 X^2+X X^2+X X X^2+X X^2 0 0 X X^2 X^2+X X X^2 0 X X X^2 0 X 0 X^2 generates a code of length 46 over Z2[X]/(X^3) who´s minimum homogenous weight is 39. Homogenous weight enumerator: w(x)=1x^0+274x^39+500x^40+848x^41+1198x^42+1190x^43+1538x^44+1784x^45+1776x^46+1762x^47+1589x^48+1344x^49+1069x^50+684x^51+386x^52+242x^53+111x^54+56x^55+18x^56+4x^57+5x^58+2x^59+2x^61+1x^62 The gray image is a linear code over GF(2) with n=184, k=14 and d=78. This code was found by Heurico 1.13 in 223 seconds.